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FORMULATIONS OF THE PROBLEMS OF THE THEORY OF AN IDEALLY ELASTIC-PLASTIC BODY* 

G.A. SEREGIN 

Various functional formulations are given for the problemsof the theory 
of quasistaic equilibrium of ideally elastic-plastic media. The first 
formulation (problem A) follows naturally form the classical formulation. 
The set of kinematically admissible fields corresponding to it has maximum 
permissible thickness under the assumption that the deformation rate tensor 
is summable It is shown that problem A is equivalent to two partial problems 
(problem B and C). Problem B represents an evolutionary variational 
inequality for the stress tensor, which has a unique solution. In problem 
c the known stress field is used to determine the velocity field as a 
solution of some variational problem depending on the load parameter. It 
is shown that problem C, and hence problem A, may have no solutions. A 
variational extension of problem C (problem C+) is constructed. Problems 
B+and C+ lead to an enlarged formulation of the classical problem (problem 
A ). It is shown that A+ always has a solution. An example is given, in 
which A has no solution and A+ has a unique solution. 

Problems concerning the mathematical correctness of the problem of 
ideal plasticity have been studied by many authors (see e.g. /l-12/. The 
approach proposed below removes a number of the restrictions in /4-ll/. 

Problem C with fixed load parameter resembles, in the mathematical 
sense, the variational problem of deformation plasticity which has been 
intensely studied in the last few years (see e.g. /Y-9/. In/T, g/the 
problem was extended to the space of displacements for which the 
deformation tensor is a Radon measure. The necessary extremal conditions 
are expressed here in terms of functions of measures (7, 9/. In the 
present paper the extension is produced by another method which makes it 
possible to obtain the relations connecting the velocity and stress fields 
sought (problem A+) in terms of point functions only, and this simplifies 
the solution of specific problems. 
of admissible sets of problem A+ 

On the other hand, the definition 
implies that the deformation rate tensor 

is a Radon measure which depends on the load parameter. 

1. Direct functional formulation of the classical problem. Let 

c' = (U,). U = (U[), T = (?ij). 0 = (Oij) (i, j = 1. 2, . . ., n) 

denote certain vectors and symmetric tensors. We will use the following notation: 

uv = Llic'i, UT = OijTjj, 1 u 1 * = uu, 10 1 * = 00 

CT= = u - IPUiiE, E = (hij) 

where uii,uD is the trace of the deviator of the tensor and u,E is the unit tensor. 
The classical initial boundary value problem on the quasistatic equilibrium of a perfectly 

elastic-plastic body is confirmed to determining the functions u and c from relations of 
the form /l, 13/. 

dir c (ZY, 1) + f (x, 1) = 0, I UD (I, 1) I < ]mi 

(E~~~~~.t))-~u0,,~~i.,1)E-~u’~(r,o)(T~u~5,1))~0 
(1.1) 

vT:jTDI<l'?k,, ZEc 

Uij (S. t) z‘j (I) = Fi (I, t)s SE y 

u (1. t) = C' (2, t), x E: l- \ y; u (3, 0) = uo (z). 3 E P 

2E (U) = (2fi.j $ ~j,i), dir U = (Uij,j) 

Here n is a bounded region whose boundary r 
measurable part of r, v 

satisfies theLipshitz condition, y is the 

velocity field, 
is the external normal to r,f and F are given loads, U is the known 

constants. 
a dot denotes differentiation with respect to TV [0, T], K,, k,, p are positive 

We will restrict OurSelVeS to the case of mixed boundary value problem, noting that the 
study of the first and second boundaryvalueproblem does not require any fundamental changes. 
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We assume that 

f,f'EL=(o, T;Ln(Qn); F, F' ELrn(O, T:.L" (*;)n) 
Bu, E c (lo, T3; H1 (Qt"): ug = Uon I? \ y 

where H'(5!)n is a Sobolev space of vector functions with finite norm 

(1.2) 

In order to produce a functional formulation of problem (1.11, we shall introduce the 
foliowing spaces: 

The space D*(Q) imbeds continuously into the spaces &VW-I) {Q)n and Lr(r)" /2j of 
surmnable functions; therefore we can define auxilliary sets of the form 

V = (VEP(Q2): u = 0 on r \ y) 
I)(A*)={(T,g):Tcr,divT~L”(s1)“, gGLw(p)” 

~(T~(u) + vdiv~)dr=fpd~, Vu= I'] 

Q (t) = (T: (T, F (t)) $t D (A’)}’ 
Qf (t) = (t E Q (t): div x + f (I) = 0 in Q) 

The stright functional formulation of problem (1.1) follows. 

Problem A. It is required to find the functions LI and CT, such that 

u f L= (0, T; 02 (a)); U (t) - Ug (t) E V 

for almost all tE 10, TJ. 

(1.3) 

(1.4) 

{I.*>) 

We assume that the following three conditions hold. The initial stress field is statical 
possible and admissible, i.e. 

00 -GE Qi (0) '? k' (1.6) 

A statically possible and safe stress ul exists, and 

A velocity field u!* exists such that 

The solution of problem A can be reduced to consecutive solution of two problems. In the 

first problem the stress field is determined, and in the second the velocity field is found. 
Here are their formulations. 

Problem 3. It is required to find the stress field o, satisfying the conditions (L.4) 
and an inequality of the form 

~~(u~~~))(T -u (Q)ds - A (o'(t), r-a(t)),< 0 (1.9) 
n 

for all z~ Qf(t)n K and almost al.1 1 " IO. Tl. 

Problem C. To find the velocity field u satisfying the condition (1.X), representing 

lY 



for almost all t E IO, Tl a solution of the following variational problem: 

Here 

and the tensor u is a 

2. Problem B. 

(1.10) 

a(t) = "in: JI (u), 
E t 

J1(V)=l/Zk* (ED(V)- 
ii 

+P(t)~dr- s F(t)vdr - 
ii 

f(t)vdx 

W, = {U E V + Ul (t): diV V = (?tK,)-‘Uii’ (t)} 

solution of problem B. 

Positive constants c,, and c1 exist such, that 
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Theorem 1. Let conditions C1.2), (1.6), (1.7) hold. Then problem B has a unique solution. 

Proof. We consider the following recurrence relation: 

Tk (oki') = min Tk (T), cc = 00. k = 0, 1, . . ., N - 1 

Qf "+lili; 
(2.2) 

1 
T,(T) = X.4 (T- 5k, T - Gk) - 

s 
e (UO k+l),dt 

A = T:,V. usk = u0 (kA), Qi" =" 0, (kA) 

The set ~3,"" n K is convex and closed in ~?(Q)nx", therefore the variational problem 
(2.2) has a unique solution provided that the tensor uk is known. 

The necessary extremal conditions lead to a series of variational inequalities for 
determining the tensor 

s E (up) (T - 5 ‘+‘)+$, r-ak")<O, Vr=Q:+1,. 

We introduce the complements in t as follows: 

where Xk(t) is the 
N - 2, and x.wel (0 

By virtue of 

60” = ukil - uh’, k = 0. 1. ., n- - 1 

k-1 N-l 
>.R. (t) = x G'lYk (f), J.&l (t) = x 5:" Xk (t) 

1. = 0 I, 0 

IN--l 

OjV (f) = 30 + 
sir 

F Zk (0) dO 

ok=0 
IN-1 s--I 

‘+ cf) = jr1 (0) i- sx $ x,, (8) de, UON (f) = 7 i$‘Xk (t) 
o k-=0 T-q 

N-l N-l 
fN (f) = x fk”Xk w, F,(t) = x Fk+’ %k (t) 

k=o k=O 

(2.3) 

characteristic function of the semi-interval [kS.(k+ 1) A] with k= 0, I,..., 

is the characteristic function of the segment IT- A, T]. 
the notation adopted we have 

% V) - Y,v (f) = (1 - (k + 1) A)o,' (f), 1 E IkA. (k $ 1) A [ (2.4) 

Let us choose N so large, that the inequality A< i/h holds in which 

k=$$ 
(If 

k,a-; b,“--kk,P-bbt~ 
) 

-1 

Then 
rk+l = (1 - hA) (Ok - o,k) + Q+l E @+I n I: 

Putting in (2.3) r=yk+l, we obtain the inequality 

A @N' @), $N' (f)) < & 
U 

& @,,N (I)) (YN (f) - 
'N' (f) &-A @,' (% YN (t) - y$(i)) + ) I 
S E (uo~ (t)) ('+ (t) - Oi (1)) dz --A (5; (t), aiN (f)) 

Q 

(2.5) 
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Accordinq to conditions [1.2), (1.71 the norms of the functions 
in Leo (0, T; L? (Q)n"n). 

E (uO~), aIXv' Q are bounded 
Therefore (2.1) and (2.5) yield the following estimate: 

with positive constants c2 and r3. 

BY virtue of estimate (2.6), the sequences (u,~Y) and 

Choosing, if needed, the subsequences, we ,find that 
ioN') are bounded in 15" (0. T; L' ,Q)nX7r) 

u+v - u (*) - weakly L- (0, 7; L2 (Q)nXVz) (2.i) 

Further, from (2.7) it follows that uK (t) - u(f) weakly in L?(Q)nxJc for all 1 E 10, 71. Thus 
if the set K is weakly closed in L"(Q),"' and uN (t)~ K. then o(t) E K for all ZEE 10, T]. 

Let 'p and w be arbitrary functions in L'(i), T) and V, respectively. Then 

Using relations (2.4) and (2.7) and passing to the limit in the last identity we find, 

that o (t) E (11 (i) for all t E [O, T]. 

Let the tensor function % E C(l0, T]: L" (Q)n'J1) and ~(tl C !'.f (i) f, K for t E IU. T] Taking 
account the inequality (2.3), we obtain 

s 
(i lUol (f)) I%.,- (i) - I', ( J 2 ) d.r - :I (sS (t). XN (1) - I.,- it)) <. (1 

$1 
M -_1 

nto 

(2.8) 

Let us pass to the limit in the last inequality. As a result we obtain the relation 

Let to= 10, Tl be the Lebesgue point of the vector-valued function 1~ o’(t) and T be an 
arbitrary tensor belonging to Qr(to)n K. Condition (1.7) ensures the following inclusions: 

Vf (fj. 
K, i. 

From (2.10) it follows that fcr i.~[il. I[ a positive number S(X), exists such that 

(rj (t) E K, I E [to - 6 (i.). t, 1. 6 (i.)] (2.11,1 
Let us take an arbitrary function g, from c([O, T]), satisfying two conditions: 

cc’ (t) E to, 11, t Ez IV! Tl; wpp g c It, - 6 (k), 10 + 6 (A)] 
Then (2.9) and (2.10) yield the inclusion 

% (1) = 'i (0 (0) (1) - 0 Iti) T 0 (1) E Of (1) 7, h‘, I f IO, T] 
Considering inequality !2.8) for the tensor x constructed above, we obtain 

f>_ b(t 1 

\' dl '1 (t) I (f, 5, it))*. 11 

1, --bti ) 

By virtue of the choice of the pcint 1, and the arbitrariness of 9, the last inequallty 

yields the relation I(t,, ax (lo)) d 0. Letting i. tend to unity, we arrive at inequality (1.91 when 

I = lo. Since the set of points t, is a set of the total measure in the interval [O, T], it follows 

that inequality (1.9) holds for almost all t belonging to [0, T]. 
The proof of the uniqueness of the solution of problem B is standard (see e.g. /l/I. 

3. The connection between problem A and problem B and C. We shall show YrI;at 

the set on which the solution of problem C is sought, is non-empty. 

Let us introduce the s-&spaces L,," and H,,'(s~)~ as follows: 

Ido?= j&L”!!!) pr-Q,/ 

if,’ (Q)” = {u E lfl (S2jn: u = 0 on 1') 

As was show:: 1~ ,I I.4 ’ r for any fimctior, f belonging to Lo2 there exists a -ieCtor f.2nCtiX 

u belonging to H,'(Q)" sucl; that 



div u = f in Q; 111~111 

and the positive constant is independent of f. 
Consider the following variational problem: 
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< c4 II f IlLa (Q) (3.1) 

III u Ill (34 
u&3.‘(Q)“, divu=i 

problem (3.2) has a unique solution for any f from Lo2; consequently it determines the 
operator x: Lo*-+ H,'(Q)" such that nf = ~1. The operator is linear and continuous by virtue 

of (3.1). 

Lemma 1. Let the tensor c be a solution of problem B. Then a function U* exists such, 

that 
U* E L= (0, T; H' (0)"); 
u* (t) - u. (t) E V, div a* (t) = (nK,)-'oii' (t) in Q 

Indeed, by virtue of the definition of the operator SC and condition (1.8), we can take 

as a* a function of the form 

a*(t)= Q!(t) + U*(2) + 7L'* SB(Vr 
n 

~(t)=(nKO)-laii'(t) - div u,,(t), v,(t)=n(~(t)-divw*S~(t)dtj 
R 

Theorem 2. The pair of functions a and u represent a solution of problem A if and only 
if the functions are solutions of problems B and C, respectively. 

The proof of Theorem 2 is preceded by a lemma. 

Lemma 2. Let the tensor 0 be a solution of problem B. Then the following relation 
holds for almost all TV (0, 2’1: 

a (t) = S (E (~0 (t)) (J (t) - f(t) uo (t)) dx - $ F (t) uo (t) dr - A (0’ (t), u(t)) 
R 

(3.3) 

Proof. We introduce a dual pair of Banach spaces 

p* = (PO = (7, 9): II P’ /I* = II T I& + II I g I lILrn(,,) < + 001 

P = {p = (V, S): X = (Xij), Xij = Xji E L’ (Q), Xii E L* (Q) 

L, j = 1, 2. ., n: s E L’ (y)“) 
(p*,p:-~v.dr+\rsdT. p*=(~,c), p=(v.,s) 

We also define a linear continuous operator A: V-P and a Lagrangian I 

Au = (E (u), --v ly ), c E 1') 

1, (u, P*) - f P*, ‘w i \ (F (u* (0) 7 - f (t) v - e (u* (t) - 
h 

u,(V) a(t)) dz- A (3' (f), T) -Cl,* (p*), ~1 E I', p* = (T, r) 

0, 

f 

if p*=(~ F(t)) 
%*(p*) = I o. o*emis; ’ 

TEE 

Let us write the relations connecting the functionals of the dual problems with the 
Lagrangian I, 

sup I, (V, q*) = 0, (I,), u E v 
.?‘EP* 

0, (u) = C, (dr) - \ f (t) udt 

h 

i$fVZf (V. q’) = I), (q*,. q* E P* 

We shall show that the following relations hold for almost all t~I0, T]: 

n-$x R, (P) = R, (P' (0), P* (0 = (0 (Q, F (Q) 

R, (P* 0)) = i,“’ @ (v) 

(3.6) 

(3.5) 

Indeed, from (3.5) we obtain the expression for the functional R, 

R, (g*) = S F (~0 (f)) rdz - .A (5’ (t), T). if q* = (7, F(t)) 

$2 
(3.8) 

7 E Q, (t) fi R, R, (q*) = --Q) otherwise 

Hence, Eq.(3.6) is a direct consequence of inequality (1.9). Consider the perturbed 

(3.4) 

(3.5) 
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problem 

h, (p) =i:_f (C,(.~V f p) - S,f(t)~&] 

R 

Eq.(3.7) holds if the function hl (P) satisfies the following two conditions (/15/, ch.3, 
proposition 2.1) for almost all tEl0, Tl : 1) hf (0) is a finite quantity, 2) the function D+ 
h,(p) is semicontinuous from below at the zero of the space P. 

Computing the exact upper bound in relation (3,4), we arrive at the formula 

Cf (.-h +- p) = 1/T k, >D I 
(I + II* (f)) -+- %D-- 7& 5 ‘D ft) dx - 

c E (u, (1) - 110 it)) s (f) dr + 
s 

F (2) (s - 1‘) dr + 

h 1 

from which we obtain the relation 

a (t) = h, ((‘1 - \ f if) uo (1) d+ - 5 F (1) uc,(f) dr 

?I 3 

l3.!11 

An upper estimate for ill(O) can be obtained from (3.9), since o(t)< J,(u, (I)). To obtain a 
lower estimate, we use condition (1.7). As a result we obtain 

I, (I. + u* (f)) > 1/? (k, - I/k,* - b,*) ); I rD (1.) 1 ds - (3.10) 

/ (f I ,i* (I) T 1/T k, tD(u* if)) - 5 s’~ (1; ( ’ I)dr-$F(f)u*(f)dT, UE~. 

The required lower estimate then foliows from (3.9) and (3.10). 

To confirm condition 2), we will choose the function I'* as follows: 

According to the 

where the constant c, 
Let us put U= UI 

h,(p) as follows: 

definition of the operator n we have 

pi* ez l’, div cI $ xii = 0 in Q, II: 1;. II! .' c5 /I %il IILl (3.llj 

is independent of p = (z,s). 
+ rl in the formula for G,(AI + pi and obtain a lower estimate the function 

/~,(O)-p-5k*l:D(!*, -L% Dl - i if’ u*) dz -+- \ F (f) (s - L..+) dr 

R Y 

This, togehter with (1.2: and (X.11;, yields the relation 

hf (A) > hl (O! - cS Iip nP, P E P 

with a positive constant cI independent of p. Therefore condition 2) holds. The assertion of 

the lemma can now be derived from (3.9), (3.8), (3.6), (3.7). 
Theorem 2 follows directly from Lemma 2, if we note that in all cases the pair of 

functions u (t) = u (f) - U* (i) and p* (1) = (u (t), F (t)) represents a saddle point of the Lagrangian 

If on the set 1. i, P* for almost all t C 10. Tl. 
Theorems 1 and 2 show that the solvability of problem A is equivalent to the solvability 

of problem C. 
Next we grve an example showing that problem A and C may have no solutions. Let us 

consider a plane problem for a concentric ring. Passing to the polar p.8 coordinate system 

with a pole at the centre of the ring, we specify the load conditions as follows: 

1 = U, o,=OinQ; p=z; u=O whenp=R, 
11 = (0, C.,) when (> =- R2. C.e = con51 

where R, and R,are the radir of the inner and outer ring contours, respectively. 

Direct subsitution shows that the unique solution of problem 6 is represented by a tense 

0 of the form 

!I 0 
5 = I/ %e 

('Qa 0 Ii ' 
iue-k*($)lj :t;8'L*' ;z;;:;; 

U 
to= -$ 

cl-i 

e V 
u*= ,1 2v k*R,, a=+ 

From (1.5) by necessity it follows that 

E (U (t)) = 0. if R, < c < R,, to < I< T 



However, the last equation has no solutions in the class D?(Q) satisfying the boundary 

conditions. 

4. Augmented functional formulation of the classical problem. Let us introduce 
an additional space of vector functions 

v, = {u E L”‘(“_l) (52)” : 11 u I/+ = S"P SvdivTdz<+ -} 

,.=~Ib;&**," 

and give an augmented formulation of the classical problem. 

Problem A+. It is required to find a vector function u and tensor function (J, satisfying 
conditions (1.4) and such, that 

U E L- (0, T; L"("-1) (a)") (4.1) 
u(t)= V+ + uo(t) for almost all t E 10, Tl 

i (E (u,,(t))(r - o(t)) - (U (t) - G(G) div (7 - o(t))1 dx - (4.2) 

A(o'(t),t-u((t))<O, Vr-EQ@)rl K 

for almost all t E [O, Tl. 
We note that if the pair of functions u and u is a solution of problem A+, then the 

tensor function u is a solution of problem B. 
The reasons for introducing such a formulation of the problem are as follows. Let us 

consider the auxilliary problem C+. 

Problem C+. It is required to find the velocity field u satisfying conditions (4.1) and 
such, that 

It@(t))= min I,(U), tE[O,T] 
DSV,f 

W,+ = {U E V+ + u0 (t): div v = (nK,)% ii (t)) 
If(U)= SUP L! (U, T), &(V, T)= 

GQV,~K 

(4.3) 

i (E (u. (t)) T -(r -a,(t)) div 7) d x - .I (u'(t), r) -1 f(t) vdx - 5 F(t)u,(t) dr 
0 Y 

and the tensor u is a solution of problem B. 
The theorem which follows shows that problem C+ represents a variational extension of 

problem C. 

Theorem 3. The following relations hold fc'r almost all tc [O, Tl : 

I, (V) = J1 (D), v F w, (4.4) 
si$+ I,(u)=Zl J,(V) (4.5) 

1 f 

We recall that replacing inf by min means that the corresponding variational problem has 
a solution. 

The following assertion is an analogue of Theorem 2. 

Theorem 4. The pair of functions u and u is a solution of problem A+ if and only if the 
functions are solutions of problems B and C respectively. 

By virtue of Theorems 1, 3 and 4 problems A+ always has a solution, and the set of its 
solutions is convex. Moreover, all elements of this set have the same tensor u. 

Proof of Theorem 3. By virtue of the definition of the set Q(r), the following relation 
holds for any vector function VE V+ uo(t) and any tensor function 'IE Q(t): 

L, (I,, T) = l (E (u) T - f (t) u) dt - s F (1) L.dr - A (3’ (t), ‘I) (4.6) 
n T 

Therefore 

To prove the converse inequality we take any smooth function TE K 
infinitely differentiable functions 

and a sequence of the 

following conditions: 
(P,,,, which have a compact carrier in D and satisfy the 

%?I (t) = lo, 119 z E Q; (Pm (2) * 1 for almost all r.mR 

It can be shown that %kk E L" $2) 19, lo/; therefore we have 

Tm @I = ‘Pm (1 - 01 W) + 01 (I) E 0 (t) n If. t E IO, Tl 

Let us put r =T, (4.6) and pass to the limit. By virtue of the Lebesgue-theorem and 
the definition of the functional I, we obtain the inequality 
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for all smooth 
of the theorem 

Lemma 3. 

Lemma 4. 
such, that the 

tensors T in K. 
follows from it. 

This implies the converse inequality and the assertion (4.4) 
Before proving assertion (4.5) we state two lemmas. 

The following relation holds: 

(4.7) 

w = (0, 0 = (u E L” (0, T; D2 (s2)): L’ (t) E w,, t E 10, T]) 

A sequence (I+) E W(0, T),, and functions UEL-(O, T; L"'('*-I) (52)n) and a E Lm (0, T) exist 
following assertions hold for almost all r~[0, 1’1: 

Jf (urn (9) -+ Q (t) 
U, (t) - u (t) strongly in Ln:(n-l) (Q)" 
dlv u (t) = (nK,)-lo,,' (1) in Q 
II u (I) - 110 (t) II+ < a (2) 

(4.Sj 

(4.91 
(4.iO) 
(4.llj 

The Proof of Lemma 3 utilizing the convexity of the functional J, and the definition of 
the function a is standard and will not be given here. 

Proof of Lemma 4. Conditions (1.2), Theorem 1, Lemma 1 and inequality (3.10) together 
yield the estimate 

-. 
I! (W (I))+ 'F (t)>vz (k, - fQ-- O+>) 5 IE (w (t) - u* (1)) Idr, vw E II‘ (0, T), f E [0, T] 

$2 
(4.i>) 

with a certain function q from Lw (0, T). 
Taking into account the continuity of the embedding of the space D%(Q) into the spaces 

Ln'V-1) (Q)fl and ~1 (r)n, we obtain the following relations from inequality (4.12): 

/I w (4 - 4 (t) II L”;(“-*) (Q)n G C? vt (w @)I + cp (1)) (4.13; 

1.4 (w (1) - U* (f) /lp = SUP <P*, 
Iii,% <I 

A (u (2) - ut (0) > <: G (J, (1~ W) + ‘T (tli (4.14) 

which hold for almost all TV 10. T] and for all LL‘E u'(0, T). 
Let (mm) be the minimizing sequence of problem (4.7). Then 

i 
(I, (u,,,(t)) - a (t))‘dl- 0 (4.15) 

Since (1 E L" (0, ‘T), then from (4.13), (4.15) there follows the boundedness of the sequence 

&J in L2 (0, T; Lns(n-l) (Q)n). Omitting the standard considerations, we assert that a sequence 
(urn) exists belonging to the convex shell of the set (I&}, for which assertion (4.9) of the 
lemma holds, with some function u from L2(0, T;L":("-~)(Q)~). 

It is clear that the sequence (u,) will be the minimizing one in problem (4.7), and this 
proves assertions (4.8), (4.10). 

Assuming W= U, in inequality (4.13) and passing to the limit, taking relations (4.8), 
(4.9) into account, we find that II E t" (0, T; L"'("+) (Q)=). 

Further, using the definitions of the set D(A*), the norm (I.//+ and relation (4.14), we 
obtain the following inequality forw= u,,,: 

for which we obtain, passing to the limit, the estimate 

11 lb (0 - U* (f) II+ < Cd (a (0 i- cp WL t 65 10, Tl 
In this case the function a(t) sought will be equal to the sum of theleftand right sides 

of the last inequality, when u(f)= ~~(2). The lemma is proved. 
Let us now prove assertion (4.5). From (4.4) it follows that 

1: (%I W) = 1, (%I (t)) >, L, (u, (t). T), T = Q (2) n K 
Passing to the limit and taking (4.8), (4.9) into account, we arrive at the inequality 

L* (U (t), T) B = (f), r E Q (f) n K* t = 10, TI 

Taking into account the structure of the Lagranqian Lf and relation (3.3), we obtain 

n (U = k (u, e (L)), VU E WI+ 

The last two relations imply that the pair of functions II(~) and o(t) represent a saddle 

point of the Lagrangian L, on the set w*+ x (in K) for almost all t=lO, Tl. Arguments used 
normally in the theory of duality, lead to the required results, thus proving Theorem 3. 
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4. Let the pair 5 and u be a solution of problem A'. Then the tensor 

of problem B. Assuming 'c= rpE+ o(t) in (4.2) where cp is an arbitrary 
to zero near the boundary, we obtain 

div II (t) = (nK&'%' (0. te& [O, Tl 

Therefore u(t)= W1& for almost all t E IO, Tl. 
The following dual inequality follows from (4.2): 

L, (u (d, T) < a (1) B L, (c, (J(t)), v E w,+, 5 E Q (1) f-7 K (4.16) 

and this means that the function u is a solution of problme C+. 
Conversely, if the functions D and u are solutions of problems B and C+, then from Theorem 

1, Eqs.(3.3), (4.51 and the definition of the Lagrangian L, the inequalities (4.16) follow. 
Thus the pair a and u represents a solution of problem A+. The theorem is proved. 

Returning now to the problem formulated at the end of Sect.3, we note that the velocity 
field in the augmented formulation is found from the inequality (4.2). Omitting the intermediate 
manipulations, we write the final solution as follows: 

The solution obtained hasa discontinuity on the inner contour of the ring when l>fO. It 
can be shown that in this case problem A' has a unique solution. 

1. 

- 
L. 

3. 

4. 

5. 

6. 

7. 

0. 

9. 
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