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FORMULATIONS OF THE PROBLEMS OF THE THEORY OF AN IDEALLY ELASTIC-PLASTIC BODY’

G.A. SEREGIN

Various functional formulations are given for the problems of the theory

of quasistaic equilibrium of ideally elastic-plastic media. The first
formulation (problem A) follows naturally form the classical formulation.
The set of kinematically admissible fields corresponding to it has maximum
permissible thickness under the assumption that the deformation rate tensor
is summable It is shown that problem A is equivalent to two partial problems
(problem B and C). Problem B represents an evolutionary variational
inequality for the stress tensor, which has a unique solution. In problem

C the known stress field is used to determine the velocity field as a
solution of some variational problem depending on the load parameter. It
is shown that problem C, and hence problem A, may have no solutions. A
variational extension of problem C (problem ct) is constructed. Problems

B and C* lead to an enlarged formulation of the classical problem (problem
AT). It is shown that a‘ always has a solution. An example is given, in
which A has no solution and At has a unique soclution.

Problems concerning the mathematical correctness of the problem of
ideal plasticity have been studied by many authors (see e.g. /1—-12/, The
approach proposed below removes a number of the restrictions in /4-11/.

Problem C with fixed load parameter resembles, in the mathematical
sense, the variational problem of deformation plasticity which has been
intensely studied in the last few years (see e.g. /7—9/. 1In/7, 9/ the
problem was extended to the space of displacements for which the
deformation tensor is a Radon measure. The necessary extremal conditions
are expressed here in terms of functions of measures (7, 9/. 1In the
present paper the extension is produced by another method which makes it
possible to obtain the relations connecting the velocity and stress fields
sought (problem A*) in terms of point functions only, and this simplifies
the solution of specific problems. On the other hand, the definition
of admissible sets of problem at implies that the deformation rate tensor
is a Radon measure which depends on the load parameter.

1. Direct functional formulation of the classical problem. ILet
v= (v u=@)hr= (1.0 = (05, j=12...,n)
denote certain vectors and symmetric tensors. We will use the following notation:
uv = uiU;, 0T = OyTy (U |® =uu, |6 1% = o0
oP =0 — nlo,E, E = (§;))
where 0;;, o¥ is the trace of the deviator of the tensor and ¢, E is the unit tensor.
The classical initial boundary value problem on the quasistatic equilibrium of a perfectly
elastic-plastic body is confirmed to determining the functions u and ¢ from relations of
the form /1, 13/.
divo(z, ) +f(x, ) =0, | 0P (2. 1) | < V 2k, (1.1)
1 . 1 .
(e(u (1) = g7 O (2, 0) E — 52 02 (z, r))(r —o(@t) <
Vi |2 | <V 2h, 290
oijla. v (o) = Fi(x, 1), z sy
u(@. )=U(z, 1), r& T\ Yy o(, 0)=o0,(2). 2 Q
2e (W) = (5 + us), divo = (04)
Here Q is a bounded region whose boundary I' satisfies the Lipshitz condition, y is the
measurable part of I, v is the external normal to T, f and F are given loads, U is the known

velocity field, a dot denotes differentiation with respect to t& [0, T, K, k,, p are positive
constants.

We will restrict ourselves to the case of mixed boundary value problem, noting that the
study of the first and second boundary value problem does not require any fundamental changes.

*Prikl,.Matem.Mekhan.,49,5,5842-859,1985

651



652

We assume that

hfELO. T; LY Q") F,F L0, T: L% (1) (1.2)
Ju, = C (10, T]H’(Q))ug=UonI‘\?

where H*(Q)" is a Sobolev space of vector functions with finite norm
I!lumﬁ(g(lulz+ui,jui.;)dx) i
a

In order to produce a functional formulation of problem (1.1), we shall introduce the
following spaces:
= vtz = T o + [ TP gy < -+ 20}

-D%Q)m{v:ﬁul!amfg(!v}-éw|eD(v)])dx+jjdivvnwg)<+ x}

The space D*®(Q) imbeds continuously intc the spaces w1 (Q)* and LU(I)* /2/ of
summable functions; therefore we can define auxilliary sets of the form

=D Qrv=0o0nT\ v}
DA¥)={(r,g): 1 =2, divt = LYY, g=L=(y)

g(’n (v} + vdw‘r)dx—-$gvd[‘ vaVf

0 (1) = {v: (v, F (1)) E":D (4%}
G ={r=Q@): divi + /(1) =0inQ}

The stright functional formulation of problem (1.1) follows.

Problem A. It is required to find the functions u and o, such that

v L=, I: D* Q) u(t) —uwe ) =V (1.3)
for almost all te= {0, Tl

0,0 & L= (0, T; L2 (Q)"); o (0) = o, {1.4)

sEQMNEK t=10,7)

Y@@t —o@)dr— 4@ 01 —o) <O (15)

for all te& K and almost all te {0, 7). Here
K = 172 fl= q, < 1/ 2k}

! ! Y g,

A o)= § (m 75500+ W P! }dx

We assume that the following three conditions hold., The initial stress field is statically
possible and admissible, i.e.

G =@ (0N K (1.6)
A statically possible and safe stress o¢; exists, and
g0, = L0 T Zho, ) =Q (), 1 =10, T} 4.7

0P ym g gy (2 (kg2 — 8,27, 8,50

A velocity field w, exists such that
v, = QN V, (dive,dr=1 (1.8)
Q

The solution of problem A can be reduced to consecutive solution of two problems. In the
first problem the stress field is determined, and in the second the velocity field is found.
Here are their formulations.

Problem B. It is reguired to find the stress field o, satisfying the conditions (1.4)
and an inequality of the form

(et —o@)ds — A(c @), T— o () <O (1.9)
Q

for all t= @ ()N K and almost all te {0, T
Problem C. To find the velocity field u satisfying the condition (1.3), representing
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for almost all te=[0, Tl a solution of the following variational problem:
Ty (u () = a(t) (1.10)
Here

a(t)= inf J,(v), J,(v)= Vik,,‘s |eP ) —
vEW,
—O'D(t)|dz— S F(t)vdl — § f(tyvdz

¥
={ve V + uy (&) divv = (nK)l0; (1)}
and the tensor ¢ is a solution of problem B.

2. Problem B. Positive constants ¢, and ¢, exist such, that
wlofP<A(e,0), {osdz={olt, A(no)<alt]lo] (2-1)
2

Theorem 1. Let conditions (1.2), (1.6), (1.7) hold. Then problem B has a unique solution.
Proof. We consider the following recurrence relation:

Ty (%) =min Ty (1), =0, k=0,1,...,N—1 2.2)
o nK

Aft—5F, 1—o")— Se(u(']’”)'rdz
b
A= TIN. ug = ug (kA),  Qff = G (kD)

1
Ty =33~

The set ¢#1n kK is convex and closed in I?(Q)"™", therefore the variational problem
(2.2) has a unique solution provided that the tensor o¢* is known.

The necessary extremal conditions lead to a series of variational inequalities for
determining the tensor

. x
S e@h™) (t— 5" dx —A( '52 , T— s"*1><0, VieQdink 2.3

§oF = of1 —oF k=0.1,..., N —1

We introduce the complements in t as follows:

N—1 N—-1 1
Yyiy= 3 sy, ww=,2 sy @)
=0 =0

N-—1

cN(t)—so+§Z %y (8) d0
0k

=0
tN— 8 ¥ N-1
3
6y (8) = 31 (0) SZ A X, @) d0, gyt E O]
0 k=0 k=0
N—1 . N-1
Inm= 2 Fyom Fyih= 3 Fy @
k=0 k=0

where y; () is the characteristic function of the semi-interval [kA, (k = 1) A] with k=0, 1, ...
N —~2, and gy, is the characteristic function of the segment [T — A, T).
By virtue of the notation adopted we have

ON() =Yy ()= (—(k+ 1) Aoy (1), te kA, (k+ 1) A[ (2.4)
Let us choose N so large, that the inequality A < 1/k holds in which

M 1 —_—\7!
h=7§- (]/k,ﬂ—T 6,2—1/14,2—6.2)
= D
M=1|ls ”’L‘* (0, T; L= (@)
Then
= (1 — ka) (0" — 0)}) + oM & Q1 N &
Putting in (2.3) 1= 11, we obtain the inequality

h
A (GN ), 3N ION<53—7 hA — {§ e(u oN (2) (YN (t) — (2.5)

Yy () dz— Aoy’ (0, Yy ()= Yo 00} +

{ & (won 49 G () = o3y (1) dz — A (s (), 03 (1)
Q
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, wAccord{nq to conditions (1.2), (1.7) the norms of the functions €{uyn) Oy, 0,y are bounded
in L®(0, 1; L* ()™"). Therefore (2.1} and (2.5) yield the following estimate:

t

iov O F<e\loy @Fddte, 1[0, 7] (2.6)
[

with positive constants ¢, and e,
By virtue of estimate (2.6), the sequences foy) and {oy’} are bounded in L™ (0. T; L:{Qyn),
Choosing, if needed, the subsequences, we ‘find that
oy — 0 () — weakly L% (0, 73 Lt (@)™ 2.7,
Op — 0 (¥) — weakly L% (0. T; L @™
Further, from (2.7) it follows that oy (1) — o(t) weakly in L* (@)™ for all te[0, T]. Thus
if the set K is weakly closed in L*(@)"*" and oy()e= K, then o()e K for all te=10, T
Let ¢ and » be arbitrary functions in 11 (0, ) and V, respectively. Then

T
(e {‘ Oy e () — fy @ w)dz— { Fy u)wer\ =0
° Q y
Using relations (2.4) and (2.7) and passing to the limit in the last identity we fing,
that o@) e @y () for all te|(0, 7).
Let the tensor function xe C (0. TI: L* (™" and =z & (i K for (e o, T]. Taking into
account the ineguality (2.3), we obtain
Sp (g ) 2 (1) = ¥ (1)) dr — A (5 {0, wiy (1) — Yy () < O
Q
N—y
Hy (1) = }: (k1) 23) 1), t=[0.7]
i=o
Let us pass to the limit in the last inequality. As a result we cobtain the relation

T

(1o, wanar<ao 12.8)
o

Pty =\ et ) — s @ di— A @), n0 —3 )

2
Let # {0, T] be the Lebesgue point of the vector~valued function tm o () and T be an
arbitrary tensor belonging to Q%) 1 K. Condition (1.7} ensures the following inclusions:

o=kt —0t)roume . tel0, 7], el 1] i)
c, = C(0, TH; T), 0, () e int K, 7 =10, 4] (2,40

From (2.10} it follows that fcr ~e (0.1 a positive number & (A), exists such that
o, ek, tely— o), tg+ 8(4) (2.11

Let us take an arbitrary function ¢ from C ([0, T}), satisfying two conditions:
¢ 0, 1], telu, T supp ¢ Clig — 8 (2), ty+ 8 (W)

Then (2.9) and (2.10) yield the inclusion
rO=q¢ @ o, —ou)+-aome ¢ K t=]0, 1]

Considering inequality (2.8) for the tensor » constructed above, we obtain

1,- 8(/)
\' atq e, s, < v
t,—b()
By virtue of the choice of the point i, and the arbitrariness of ¢, the last ineguality
yields the relation 1({(t, o, (t)) < 0. Letting *» tend to unity, we arrive at inequality (1.9) when
t =1, Since the set of points ¢, is a set of the total measure in the interval [0, T], it follows

that ineguality (1.9) holds for almost all t belonging to [0, TL
The proof of the uniqueness of the solution of problem B is standard (see e.g. /1/).

3. The connection between problem A and problem B and C. we shall show that
the set on which the solution cof problem C is sought, is non-empty.
Let us introduce the subspaces L, and Hg (Q)" as follows:

Lé=lj=r120) L far—n}
]
HM Q) = {u= H* ()™ u=0onl}
As was shown in /147, for any function f belonging to L, there exists a vector
u belonging to Hy!' ()" such that

functiorn
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divu =fin & lufl <elfle@ @3.1)

and the positive constant is independent of f.
Consider the following variational problem:

s it = win fiFwe ll (3.2)
weHM@)", divu=f
Problem (3.2) has a unique solution for any f from L,2; consequently it determines the
operator m: Lo?-> H' (Q)" such that nsf = uy. The operator is linear and continuous by virtue
of (3.1).

Lemma 1.
that

Let the tensor ¢ be a solution of problem B. Then a function u, exists such,

u, € L= (0, T; H ("),
ue () —ue M EV, divu, (1) = (nKe oy’ (1) in Q
Indeed, by virtue of the definition of the operator m and condition (1.8), we can take
as y, a function of the form
u*(t)zuo(t)+v*(i)+u'*gﬁ(t)dz
o3
B (1) = (nKo) oy (1) — divuo(t), v, (t)=n (B(t)—divw, {B()dz)
Q

Theorem 2. The pair of functions o and u represent a solution of problem A if and only
if the functions are solutions of problems B and C, respectively.
The proof of Theorem 2 is preceded by a lemma.

Lemma 2. Let the tensor ¢ be a solution of problem B. Then the following relation
holds for almost all te<= {0, T]:

a(t)= §z(€ (uo()) o (t) —f(t)uo (2))dz — K F(t)uo(t)dl — A (0" (1), 0 (1)) (3.3)
Y

Proof. We introduce a dual pair of Banach spaces

Pr={p*=1(1, g: Ip*le=Ivlg+1{l Klﬂme < + oot
P={p= (v s)n= (%), %ij = %5 & L* (Q), w;; & L*(Q)

Li=1,2...m s=L@H"
<p*, P>—§wd1+gfsdr. pr=(1,8), p=(%29
@ Y

We alsc define a linear continuous operator 4: V— P and a Lagrangian 7

Av = (e (v), —v |\. ), ve V)
o, P9 = ¥, v+ (a0 T—7 1) 0 — e (ug (8) —
Q
wtho(t)dz—A(s (1), ) =Gy * (p%), vV, prk=(r,9)
0, if p*=(1, F(t)), t=K
* (p¥) =
Caft (P {+oo otherwise

Let us write the relations connecting the functionals of the dual problems with the
Lagrangian 1,

sup ly (v, ¢*) = ®; (1), veV (3.4)
q*e P
@, (v) =G, (4r) — S/ (t) vdz
Q

inf I, (v, g*) = R, (g*). * p*
l'év'(v 7*) (g%, *e 3.5
We shall show that the following relations hold for almost all < {0, T]:

n}’ﬂ} Ri(q*) = Ry (p* (1), p* () = (0 (1), F (1) (3.6)
Ry (p* (1) = ind © () (3.7

Indeed, from (3.5) we obtain the expression for the functional R,

B ={e@uwz—16 @0, if = F@) @8
Q
T 0 ()N K, R (g*) = —eo otherwise

Hence, Eq.(3.6) is a direct consequence of inequality (1.9). Consider the perturbed
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problem
I, (p) -i‘r!f {Ci (Av 4+ p) — S,f (t) vdz}
°
Eg.(3.7) holds if the function &, (p) satisfies the following two conditions (/15/, ch.3,
proposition 2.1) for almest all t=[0, Il : 1)k (0) is a finite quantity, 2) the function p -
ks (p) i1s semicontinuous from below at the zerc of the space P.
Computing the exact upper bound in relation (3.4}, we arrive at the formula

. = 1. i
GyAv + p) = ]/2 k*§ ,.’—‘D(l'—{— Uy (t)) = L EG D ) |dz —

gs(u*(z)~uo{t))s(z)dz+ SF(:)(s—z~)dI‘+
Q ¥

0, if %, +dive=0 in @
{ - o0 otherwise cayuae

from which we obtain the relation

a(l) = h1 () gj (t) ug () dz — S F (tyu, 1y dl' (3.0
Q e

An upper estimate for (0) can be obtained from (3.9), since ¢ (1)< J;(u, (t)). To obtain a

lower estimate, we use condition (l.7). As a result we obtain
T 4 ug (1) 2 V2 ke — Vi — 040 Q P () |do— (3.10)
o

>

.
g

_ 1. C
<]’(i,) ug (1) + 12 k*lsD(u* (t))——(?sf’ (z)[)dz-- \ Fityuy(t)dl, vel
Y

©

The required lower estimate then follows from (3.9) and (3.10).
To confirm condition 2), we will choose the function =, as follows:

’
v =11 [di\' Wy ( %5 dr — ‘/'ii) — u'*S 7;; dz

According tc the definition of the operator n we have
vy & V. dive, + % = 0 in Q, Mrall =7 sl %ii fipey (3.11)

where the constant ¢; is independent of p = («, 5).
Let us put v= w+ v, in the formula for 6;(4r-+ p) and obtain a lower estimate the function
k (p} as follows: .
hitpy = in' ‘!Gz (A w4 vy + ) — \7 (8} (w + vx) dz} >
2

=V, div ou=g "
ky (0)—S (I/Ek*l;,D“.*] s ,{D! — 1t vy) dz + \ Fit) (s — vg) dT
e ¥
This, togehter with (1.2} and (3.11;, yields the relation
Ry (p) = B (0) — celiplp, PEP

with a positive constant ¢ independent of p. Therefore condition 2) holds. The assertion of

the lemma can now be derived from (3.9), (3.8), (3.6), (3.7).

Theorem 2 follows directly from Lemma 2, if we note that in all cases the pair of
functions v (1) = u (1) — u, (1) and p* (t) = (0 (1), F (#)) represents a saddle point of the Lagrangian
I, on the set V1 x P* for almost all t= [0, Tl

Theorems 1 and 2 show that the solvability of problem A is equivalent to the solvability
of problem C.

Next we give an example showing that problem A and C may have no solutions. Let us
consider a plane problem for a concentric ring. Passing to the polar p, 8 coordinate gystem
with a pole at the centre of the ring, we specify the load conditions as follows:

j=0, 6=0inQ; y=«; u=0 when p= R
u = (0. Uy) when p == Ry. Uy = const
where R, and R, are the radii of the inner and outer ring contours, respectively.
Direct subsitution shows that the unigue solution of problem B is represented by a tenscr

¢ of the form

_ 10 o K, (ﬂ)zf tUgily, te(0,t]
360 |7 T8 ™*\p |1, te[to, T
U ot — 1 kg Ry
to=-zv-’;—, Ue=—m— o Fo =7~

From {(1.3) by necessity it follows that
eu@)=0 if R <p<Hh, t,<t:<T
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However, the last equation has no solutions in the class D?(Q) satisfying the boundary
conditions.

4. Augmented functional formulation of the classical problem. Let us introduce
an additional space of vector functions

V.={o=L"" Q" |v),= sup (vdividz <+ o}
M edy
p*=(5, Hi=DB(an *
and give an augmented formulation of the classical problem.
Problem A%, It is required to find a vector function u and tensor function ¢, satisfying
conditions (1.4) and such, that

ue Lo (0, T; LMD (Q)™) 4.1
u()=V, +u,(t) for almost all (&[0, T}

S (e (o (1)) (1 — 0 (2)) — (u (t) — uo () div (1 — o (¢))} dz — (4.2)
Q

At T—o) <0, Vi=Q@®NK

for almost all te& [0, T).

We note that if the pair of functions ¢ and u is a solution of problem A*, then the
tensor function ¢ is a solution of problem B.

The reasons for introducing such a formulation of the problem are as follows. Let us
consider the auxilliary problem ct.

problem c*. It is required to find the velocity field u satisfying conditions (4.1) and
such, that

Liut)= vg&]x{ Ii(v), t=[0,T] (4.3)

Wt ={ve V, + uy (t): dive = (nKe) 0, (1))
ILiiv)= sup Li(v,71), Li(v,7)=
T=QUWNK
oo )1 — (0 —uo @) diveydz — A (o' (1), ) ~{ f () vdz — { F (¢) wo (1) ar
Q Q ¥
and the tensor ¢ is a solution of problem B.
The theorem which follows shows that problem ct represents a variational extension of
problem C.

Theorem 3. The following relations hold fcr almost all (= [0, T):

L) =J@v=Ww, (4.4)
min /,(v)= inf J;(v) (4.5)
=W, =W,

We recall that replacing inf by min means that the corresponding variational problem has
a solution.
The following assertion is an analogue of Theorem 2.

Theorem 4. The pair of functions ¢ and u is a solution of problem at if ana only if the
functions are solutions of problems B and C respectively.

By virtue of Theorems 1, 3 and 4 problems at always has a solution, and the set of its
solutions is convex. Moreover, all elements of this set have the same tensor a.

Proof of Theorem 3. By virtue of the definition of the set (@ (1), the following relation
holds for any vector function ve V+ u, () and any tensor function te O(y:

Lo, 1= S () T—f{t)v) dz— S F(t)vdl — A (3" (8), 1) (4.6)
Q Y
Therefore

J ()= sup L, (v, 1) > = : ' ;
() sup (v )/ES‘(‘:?DK""”") @), YeeW,

To prove the converse inequality we take any smooth function te& X and a sequence of the
infinitely differentiable functions g¢m, which have a compact carrier in © and satisfy the
following conditions:

i 0,1], 2 Q; ¢, {z)>1 for almost all z2eQ

It can be shown that euel™(Q) /9, 10/; therefore we have

A =fmt—a @)+ )=sQWNK, tel0, T

Let us put T=1tm (4.6) and pass to the limit. By virtue of the Lebesgue “theorem and
the definition of the functional J; we obtain the ineguality
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L2 {emr—r1wnd—{Four—a6 w9, vew,
2 N

for all smooth tensors 1 in K. This implies the converse inequality and the assertion {(4.4)
of the theorem follows from it. Before proving assertion (4.5) we state two lemmas.

Lemma 3. The following relation holds:

T
W(on'xrﬂ‘g (v ) —a@)dt =0 @7
W=0 D={al0 ;D Q): e W, tel0, I
Lemma 4. A sequence {up,)&W(0,7T), and functions wuelL®(0,T; L% (@) and qe L*® (0, T) exist
such, that the following assertions hold for almost all te [0, T]:
Iy (m (t)) — a (1) , (4.8)
um (8) — u (f) Strongly in L™®-1) gy (4.9
div u (f) = (nKo)™loyi" (1) in Q (4.10)
fuit) —u @)+ <a(@ (4.11)

The proof of Lemma 3 utilizing the convexity of the functional J; and the definition of
the function a is standard and will not be given here.

Proof of Lemma 4. Conditions (1.2), Theorem 1, Lemma 1 and inequality (3.10) together
yield the estimate

@) 00>V ty~ VR85 {lew ®) —us ) dr, Vo= W 0, 7). te10,7] 5.12)
O
with a certain function ¢ from L™ (0, 7).
Taking into account the continuity of the embedding of the space D?(R) into the spaces
Lve-DyQym  and L1(r)*, we obtain the following relations from inequality (4.12):

Iw @) = e (O nsinegy gyn << o7 o (W () + @ (1) (4.13;
14 (w@ —u* @|p =” Srlp<1< PY A () —ue ) > <o (Jy (w(®)+ ¢ (1) (4.14)

IS

which hold for almost all te& (0. 7] and for all we W(0, 7).
Let ({(w,} be the minimizing sequence of problem (4.7). Then

T
S (7w, ) — a (£))2d8 — 0 (4.15)

0

Since a=L%(0,7T), then from (4.13), (4.15) there follows the boundedness of the segquence
fomy in L2(0, T; LD (gymy, Omitting the standard considerations, we assert that a sequence
{umj ©exists belonging to the convex shell of the set ({(w,}, for which assertion (4.9) of the
lemma holds, with some function u from L2 (0, T; LM®@ D (Q)n),

It is clear that the sequence {u,} will be the minimizing one in problem (4.7), and this
proves assertions (4.8), (4.10).

Assuming w=u, in inequality (4.13) and passing to the limit, taking relations (4.8;,
(4.9) into account, we find that ue L™ (0, T; LV™D (@),

Further, using the definitions of the set D (4*), the norm |-|, and relation (4.14), we
obtain the following inequality for w= up:

sup \ Qg (8) = ug (8)) div Tdz < e (7w, (8)) + G (8)
ot Hban &
for which we obtain, passing to the limit, the estimate
fu@®—u, M <a@@)+e@) tel0, T]

In this case the function «(t) sought will be equal to the sum of the left and right sides

of the last ineqguality, when u (t) = ue (!). The lemma is proved.

Let us now prove assertion (4.5). From (4.4) it follows that
Jt (m () = Iy (o (0)) 2 Ly (um (&), ThT€ Q@) N K
Passing to the limit and taking (4.8), (4.9) into account, we arrive at the inequality

Liu@n<e(t), TN kK, t<]0, 7]
Taking into account the structure of the Lagrangian [, and relation (3.3), we obtain
a(t)=L,(v, 6(2)), Vve W,
The last two relations imply that the pair of functions u(f) and o () represent a saddle

point of the Lagrangian L, on the set W,* x (Q() N k) for almost all te|{0, T]. Arguments used
normally in the theory of duality, lead to the required results, thus proving Theorem 3.
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proof of Theorem 4. Let the pair s and u be a solution of problem a*. Then the tensor
¢ will be a solution of problem B. Assuming t= @E-+ o(t) in (4.2) where ¢ is an arbitrary
smooth function equal to zerc near the boundary, we obtain

div u (1) = {(nKo) oy (), t= [0, T}

Therefore u{f)e W;* for almost all tel0, Tl

The following dual inequality follows from (4.2):

Liu@@o<a®<Li(, o), vaW*, 1@k (4.16)
and this means that the function u is a solution of problme ct. .

Conversely, if the functions ¢ and u are solutions of problems B and C , then from Theorem
1, Egs.(3.3), {(4.5) and the definition of the Lagrangian ZL; the inegualities {(4.16) follow.

Thus the pair ¢ and u represents a solution of problem 2%, The theorem is proved,

Returning now to the problem formulated at the end of Sect,3, we note that the velocity
field in the augmented formulation is found from the ineguality (4.2). Omitting the intermediate
manipulations, we write the final solution as follows:

u = (0, ug)

v

1y 3 o 2 8
Crled - ) t=nal wg=gee et 7]

Y= T AT R

Q!W

The solution obtained has a discontinuity on the inner contour of the ring when t>1t, It
can be shown that in this case problem a* has a unigque solution.
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